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Abstract 

Background: Skeletal muscle fiber type distribution has implications for human health, muscle function, and perfor‑
mance. This knowledge has been gathered using labor‑intensive and costly methodology that limited these studies. 
Here, we present a method based on muscle tissue RNA sequencing data (totRNAseq) to estimate the distribution of 
skeletal muscle fiber types from frozen human samples, allowing for a larger number of individuals to be tested.

Methods: By using single‑nuclei RNA sequencing (snRNAseq) data as a reference, cluster expression signatures were 
produced by averaging gene expression of cluster gene markers and then applying these to totRNAseq data and 
inferring muscle fiber nuclei type via linear matrix decomposition. This estimate was then compared with fiber type 
distribution measured by ATPase staining or myosin heavy chain protein isoform distribution of 62 muscle samples in 
two independent cohorts (n = 39 and 22).

Results: The correlation between the sequencing‑based method and the other two were  rATPas = 0.44 [0.13–0.67], 
[95% CI], and  rmyosin = 0.83 [0.61–0.93], with p = 5.70 ×  10–3 and 2.00 ×  10–6, respectively. The deconvolution inference 
of fiber type composition was accurate even for very low totRNAseq sequencing depths, i.e., down to an average 
of ~ 10,000 paired‑end reads.

Conclusions: This new method (https:// github. com/ OlaHa nsson Lab/ Predi ctFib erType) consequently allows for 
measurement of fiber type distribution of a larger number of samples using totRNAseq in a cost and labor‑efficient 
way. It is now feasible to study the association between fiber type distribution and e.g. health outcomes in large well‑
powered studies.
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Introduction
Our bodies constitute to ~ 30–40% of the skeletal mus-
cle, and it is the most abundant form of the three types 
of muscle, the others being smooth and cardiac. The 
skeletal muscle is composed of different fiber types (i.e., 
muscle cell types), and the relative proportions of these 
types vary among the muscles, locations within the 

muscles, individuals, and the sex of individuals [1–4]. 
The oxidative and glycolytic potential and the contrac-
tile properties differ considerably between fiber types, 
with the mitochondria-rich slow-twitch fibers (type I) 
having higher oxidative capacity, and fast-twitch fibers 
(type IIa and type IIx) having higher glycolytic capac-
ity [1]. The proportions also change as people age, with 
type II fibers being preferentially affected by sarcopenia 
[5]. Exercising the skeletal muscle is a major site for cata-
bolic metabolism of the blood glucose and lipids and the 
metabolic characteristics of this tissue influence both the 
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performance of elite athletes [6, 7] and an individual’s 
predisposition to disease, e.g., impairments in glucose 
and lipid transportation into myocytes can promote 
diabetes and atherosclerotic vascular disease [8–10]. 
Although environmental factors, such a training or sed-
entary behavior and aging, lead to adaptive alteration in 
capillary density and fiber composition (an increase in 
type IIa vs type IIx) in the skeletal muscle, these features 
are partially under genetic control [11, 12]. However, the 
extent to which transition of type I to type II fibers and 
vice-versa occurs remains uncertain [6]. The muscle tis-
sues are usually classified according to the predominant 
myosin heavy chain (MyHC) isoforms, but this is a sim-
plified classification that disregards the large number of 
other proteins expressed in the skeletal muscle [2, 13]. It 
is thus not straightforward to estimate and compare mus-
cle fiber types in humans, e.g., owing to large heteroge-
neity and limitations of the methodology, and it is even 
more challenging in frozen, postmortem samples.

In addition to cells from differing types of muscle fib-
ers, a biopsy sample also contain cells such as fibro-
blasts, endothelial cells, adipocytes, smooth muscle cells, 
and neuron-associated Schwann cells. Gene expression 
analysis of the skeletal muscle is thus rendered difficult 
by the complexity of this tissue. Although sequencing of 
transcriptomes from muscle biopsies may still provide a 
perspective on functional differences between individu-
als, targeted RNA sequencing from isolated cells provides 
the opportunity to reveal differences specific to the dif-
ferent cell populations [14]. Previous studies investigat-
ing the skeletal muscle have applied single-cell RNA 
sequencing (scRNAseq) to extracted mono-nucleated 
cells [15–20]. These studies have for example described a 
complex landscape of different cell types, e.g., two differ-
ent populations of muscle progenitor cells [15], provided 
detailed knowledge concerning muscle regeneration [19] 
and muscle disease etiology [20]. A challenge for single-
cell genomic studies in the muscle and other solid tissues 
is to capture cell types that are difficult to isolate in sus-
pension [21], e.g., muscle fibers have not been sequenced 
in the abovementioned scRNAseq studies. However, 
a few studies have isolated and sequenced single nuclei 
including the nuclei from poly-nucleated primary muscle 
fibers in mice [22–24] and e.g. found that myofiber types 
predominantly express either slow or one of the fast iso-
forms of MyHC proteins, while only a small proportion 
of hybrid fibers can express more than one MyHC [22]. 
However, no study has investigated poly-nucleated pri-
mary muscle fibers from humans.

Results
Here, we present a method to estimate the proportion of 
skeletal muscle fiber types using only muscle tissue RNA 

sequencing (totRNAseq) data that could be used on fro-
zen samples. The method is based on snRNAseq informa-
tion of one human individual and then evaluated in two 
independent larger totRNAseq data sets of the human 
skeletal muscle (the Muscle SATellite cell study, MSAT, 
n = 39 and the Juntendo Muscle Study, JMS, n = 23).

A novel muscle fiber type prediction model derived 
from single‑nuclei RNA sequencing
After filtering and quality control (see the “Material and 
methods” for details), the snRNAseq data set consisted 
of 2699 nuclei, with 22,084 expressed genes. On aver-
age, ~ 500 genes were found per nuclei (Supplementary 
Fig. 1). Five major clusters of nuclei were identified using 
graph-based clustering built on Louvain modularity opti-
mization [25]. For visualization of the nuclei populations, 
t-distributed stochastic neighbor embedding (tSNE) 
non-linear dimension reduction was applied (Fig.  1a). 
A separation of type I (cluster B) and type II (cluster A) 
fiber nuclei is clearly observed, i.e., gene markers of type 
I and type II fibers (e.g., ATP2A2, TPM3, MYH7B versus 
ATP2A1, MYBPC2, MYH2) display a distinct expression 
pattern in different clusters (Fig.  1b). Cluster D is likely 
representing endothelial cells, i.e., enriched for gene 
markers like LDB2, VWF, BTNL9, and FLT1. The identity 
of clusters C and E is less clear but could possibly rep-
resent fibroblasts respectively pericytes. The complete 
list of 48 gene markers for the five clusters are shown in 
Fig. 1c.

Muscle fiber typing using total RNA sequencing from frozen 
samples
To evaluate the efficacy of estimating proportions of 
type I versus type II fiber nuclei in muscle samples from 
totRNAseq data, a deconvolution analysis [26] was per-
formed in a data set consisting of 39 human subjects, 
i.e., the MSAT study (Table 1). Briefly, by using the snR-
NAseq data as a reference, cluster expression signatures 
were produced by averaging gene expression of cluster 
gene markers and then applying these to the totRNA 
MSAT data set by inferring muscle fiber nuclei type via 
linear matrix decomposition [26] and then finally com-
pare this estimate with the fiber type proportions meas-
ured by ATPase staining of the same muscle samples. The 
correlation between the estimated proportions of muscle 
fiber nuclei types from totRNAseq data and muscle fiber 
types from ATPase staining was r = 0.44 [0.13–0.67], 
[95% CI] at  pspearman = 5.70 ×  10–3, n = 39 (Fig.  2a). The 
same deconvolution analysis was performed on a second 
dataset consisting of 23 human subjects from Japan, i.e., 
the JMS (Table 2). The correlation between the estimated 
proportions of muscle fiber nuclei types from totRNAseq 
data and muscle fiber types measured by MyHC protein 
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isoform distribution in the JMS was r = 0.83 [0.61–0.93], 
[95% CI] at  pspearman = 2.00 ×  10–6, n = 22 (Fig.  2b). One 
individual was excluded due to low sequencing quality. To 
further validate the method skeletal muscle totRNAseq 
data was downloaded from the Genotype-Tissue Expres-
sion project (n = 569) and tested for differences in fiber 
type distribution between men and women. As expected, 
we observed a larger proportion of type I fibers in women 

compared to men (68% [54–76%] versus 56% [39–71%], 
median [95% CI], pMann-Whitney = 3.1 ×  10–7, nwomen = 171, 
and nmen = 398, Fig. 2c).

To test the possibility of implementing this method for 
fiber typing of a large number of samples, we estimated 
the needed minimal sequencing depth of totRNAseq 
data that accurately would infer skeletal muscle fiber type 
composition. An increasing number of randomly selected 

Fig. 1 A single‑nuclei RNAseq of the human skeletal muscle. Slow‑ (type I) and fast‑twitch (type II) fibers form species‑specific distinct clusters of 
nuclei. a Five major clusters of nuclei were identified using graph‑based clustering built on Louvain modularity optimization. For visualization of 
the nuclei populations, t‑distributed stochastic neighbor embedding (tSNE) non‑linear dimension reduction was applied. b Examples of nuclei 
expression patterns for genes separating different clusters, i.e., ATP2A1, MYBPC2, and MYH2 are enriched in cluster A (type II fiber), XPO4, ATP2A2, 
TPM3, and MYH7B are enriched in cluster B (type I fiber), LRRTM4 is enriched in cluster D (endothelial), and MECOM is enriched in cluster E. c 
Complete list of the 48 marker genes separating the five clusters
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reads were removed from the totRNAseq data of the 39 
samples in the MSAT study. The initial average sequenc-
ing depth of 35 million paired-end (PE) reads were 
“down-sampled” by this method, and Spearman correla-
tions (Fig.  2d) and mean square errors (Supplementary 
Fig.  2) between the ATPase and totRNAseq predicted 

fractions of type I fibers were calculated. The accuracy 
of deconvolution inference of fiber type composition was 
similar to the 35 million PE reads level even at very low 
sequencing depths, i.e., down to an of average ~ 10,000 
PE reads (Fig. 2d and Supplementary Fig. 2).

Discussion
Here, we present a method to estimate the propor-
tion of skeletal muscle fiber types from frozen samples 
allowing for a larger number of samples to be measured 
in a standardized, cost, and labor-efficient way. Skeletal 
muscle fiber type distribution is a determinant of physi-
cal performance [27–30] and overall health [31–35] and 
is highly heritable in humans [11, 12]. For example, a 
reduced proportion of oxidative slow-twitch type I fib-
ers is associated with lower insulin sensitivity in the 
diabetic muscle [31–34] and muscle atrophy, e.g., age-
related sarcopenia is progressing in a fiber type-specific 
manner [35]. Recently, it has also been shown that skel-
etal muscle response and recovery from exercise training 

Table 1 Description of the Muscle SATellite cell study (MSAT)

Note: Type II fiber types are given as type II = type IIa + type IIx, all male subjects

N Minimum Maximum Mean SD

Age (years) 39 21 54 36 8

Weight  (kgBW) 39 70 97 79 6

BMI  (kgBW/m2) 39 19 31 24 3

VO2peak (ml/kgBW per min) 39 31 70 52 8

Peak power (W/kgBW) 39 11 16 13 1

Average power (W/kgBW 39 8 10 9 1

Type I (%) 35 40 81 62 10

Type II (%) 35 19 60 38 10

Fig. 2 a Correlation between the estimated proportions of muscle fiber nuclei types from totRNAseq data and muscle fiber types from ATPase 
staining in the MSAT study, r = 0.44 [0.13–0.67], [95% CI] at pspearman = 5.70 ×  10–3, n = 39. b Correlation between the estimated proportions of 
muscle fiber nuclei types from totRNAseq data and muscle fiber types from myosin heavy chain distribution in the JMS study, r = 0.83 [0.61–0.93], 
[95% CI] at pspearman = 2.00 ×  10–6, n = 22. c Estimated proportions of muscle fiber nuclei types from totRNAseq data from the genotype‑tissue 
expression project (ntot = 569). Women had a higher proportion of type I fiber nuclei compared to men, 68% [54–76%] versus 56% [39–71%], 
median [95% CI], pMann‑Whitney = 3.1 ×  10–7, nwomen = 171, and nmen = 398. d Correlations between the estimated proportions of muscle fiber nuclei 
types from totRNAseq data and muscle fiber types from ATPase staining in the MSAT study at different sequencing depths
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is dependent on fiber type composition and is thus an 
important factor to consider in the development of indi-
vidualized training advice [36–38].

However, many of the abovementioned associations 
with fiber type distribution are based on low-powered 
studies. One of the limiting factors is that the methodol-
ogy for determining fiber type distribution is labor-inten-
sive and thus relatively expensive. The method presented 
here allows for a larger number of samples to be analyzed 
using totRNAseq in a standardized and relatively fast 
way. With this new method, the distribution of type I 
versus type II fibers can be estimated, but it cannot dis-
tinguish between type IIa and type IIx fibers. However, 
this is achievable with only a small amount of muscle tis-
sue (~ 5–10 mg), e.g., from sampling with the minimally 
invasive microbiopsy technique [39]. The deconvolution 
inference of fiber type composition was accurate even 
for very low sequencing depths, i.e., down to an average 
of ~ 10,000 PE reads. This means that a shallow-coverage 
totRNAseq experiment (or targeted RNAseq) will be suf-
ficient to accurately estimate skeletal muscle fiber type 
composition at a low cost per sample (< 1 dollar/sample). 
This new method consequently allows for the measure-
ment of fiber type distribution of a larger number of 
samples and makes it feasible to study the connection 
between fiber type distribution and health with well-
powered studies. It can also be used for estimating fiber 
type distribution in public repositories of totRNAseq 
data (e.g., Genotype-Tissue Expression project) and per-
form in silico analyses of fiber type associations. In con-
clusion, totRNAseq can efficiently be used to estimate 
skeletal muscle fiber type distributions of frozen samples.

Materials and methods
snRNAseq data generation
For nuclei isolation from frozen tissue, all following steps 
were performed on ice with precooled buffers and cen-
trifugation steps were performed at 4 °C. The tissue was 
disrupted and nuclei liberated through dounce homog-
enization in ice-cold homogenization buffer (0.32  M 
sucrose, 3 mM CaCl2, 2 mM magnesium acetate, 0.1 mM 
EDTA, 1  mM DTT, 10  mg/ml BSA, 10  mM Tris–HCL, 

protease inhibitors (Sigma-Aldrich)) in the presence of 
0.1% NP40. The nuclei suspensions were sequentially 
passed through 40-, 30-, and 20-μm cell filters (Miltenyi 
Biotec) and centrifuged at 1000  g for 10  min. The pel-
let was resuspended in 1% RNase-free BSA in PBS and 
stained using DAPI (1:1000, BD Pharmingen). Intact sin-
gle nuclei were sorted in bulk using the DAPI-positive 
event population, at single-cell sort precision and using 
a 100-µm nozzle (BD FACS AriaIII) into PBS/1% BSA. 
Nuclei were counted and loaded on a 10 × chromium 
microfluidic chip, aiming for the maximum possible 
number of nuclei to be targeted obtained from the sort-
ing. Single-nucleus experiments were performed using 
the 10 × genomics single cell 3′ kit v.2 to encapsulate 
nuclei along with barcode tagged beads, generate, and 
amplify cDNA and to generate sequencing libraries. Each 
pooled library was barcoded using i7 barcodes provided 
by 10 × Genomics. cDNA and sequencing library quality 
and quantity were determined using Agilent’s High Sen-
sitivity DNA Assay. Libraries were pooled and sequenced 
in 150-bp paired-end mode on Illumina’s HiSeq platform.

snRNAseq data processing and analysis
Post-processing pipeline Cell Ranger (https:// suppo rt. 
10xge nomics. com/ single- cell- gene- expre ssion/ softw are/) 
provided by 10X Genomics was used for demultiplex-
ing, alignment, filtering, barcode, and unique molecular 
identifier (UMI) counting. The pipeline produced files 
in FASTQ and BAM formats, as well as the matrix of 
UMI counts. We used Seurat workflow for further qual-
ity control and downstream analysis of the snRNAseq 
gene expression data. The initial data set contained 2937 
nuclei and 22,336 expressed genes. Nuclei with a high 
fraction of their counts coming from mitochondrial 
and ribosomal genes were removed. Next, genes with at 
least one UMI count present in at least one nucleus were 
selected. After these steps, 2699 nuclei and 22,084 genes 
were included in the downstream analysis. We normal-
ized the gene expression data with the LogNormalize 
method of Seurat and standardized the count values 
prior to performing the Principal Component Analysis 
(Supplementary Fig.  3). JackStraw procedure [40] was 
applied as a denoising step in order to select an optimal 
number of Principal Components (PCs), indicating that 
3 PCs to keep for further downstream analysis, which 
can be viewed as identifying the true intrinsic dimen-
sionality of the snRNAseq data. Further, the number of 
cells predicted to be proliferative was investigated using 
a list of the genes annotated as functioning in the cell 
cycle according to [41]. The vast majority of cells were 
not detected to be proliferating and the cycling cells did 
not form any separate cluster (Supplementary Fig. 4a-b). 
Graph-based clustering based on Louvain modularity 

Table 2 Description of the Juntendo Muscle Study (JMS)

Note: Type II fiber types are given as type II = type IIa + type IIx, 10 female and 13 
male subjects

N Minimum Maximum Mean SD

Age (years) 23 20 32 23 3

Weight  (kgBW) 23 50 72 61 6

BMI  (kgBW/m2) 23 17 26 22 2

Type I (%) 23 27 60 40 9

Type II (%) 23 40 73 60 9

https://support.10xgenomics.com/single-cell-gene-expression/software/
https://support.10xgenomics.com/single-cell-gene-expression/software/
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optimization [25] with resolution parameter equal to 
0.1 was used for detecting boundaries between different 
populations of nuclei, and tSNE non-linear dimension 
reduction with perplexity 50, that was chosen as a square 
root of the number of nuclei according to the k-nearest 
neighbors rule of thumb, was applied for visualization of 
the nuclei populations (Fig. 1a). The snRNAseq data was 
uploaded to Gene Expression Omnibus (GEO) and is 
available under accession number GSE190489.

Deconvolution analysis
Deconvolution analysis [26] was performed using the 
snRNAseq data as a reference. For this purpose, the 
snRNAseq data was used to produce cluster signatures, 
which are marker gene expressions averaged across cells 
from each cluster. After that, the gene expression of each 
type of the skeletal muscle fibers in a bulk RNAseq sam-
ple was inferred via linear matrix decomposition [42]. 
The deconvolution analysis was performed using Decon-
RNASeq R/Bioconductor package, and the results are 
presented in Fig. 2a, b.

Study subjects
The MSAT cohort: 39 Swedish male subjects (Table  1) 
were enrolled in the study by advertising on social media 
and through local cycling clubs. Inclusion criteria were 
as follows: (1) male, (2) healthy, not on any medications, 
and (3) age range between 20 and 55. Subjects were given 
both oral and written information about the experi-
mental procedures before giving their written informed 
consent. Each participant went through three visits at 
different time points. All subjects completed all three 
visits. The first visit involved a regular doctor’s examina-
tion with blood samples and measuring anthropometric 
characteristics. The second visit consisted, after an over-
night fast, of a Wingate test followed by muscle biopsy 
and  VO2max was measured during the third and last visit. 
The study was approved by the local Ethics commit-
tee, Lund University (Dnr 2015/593). For determination 
of peak anaerobic power (Wingate) and  VO2max, sub-
jects were instructed to perform only easy training 48 h 
prior to each test. To determine peak anaerobic power, a 
30-s all-out Wingate test [43] was conducted on a cycle 
ergometer (Monark Peak power). Before the test, a 5-min 
low intensity ~ 150w warm-up, with instructions to per-
form a 5 s high cadence drill each minute was performed. 
The test started with the subject pedaling as fast as pos-
sible. When a cadence of 120  rpm was reached, a brak-
ing resistance equivalent to 0.7 N × m ×  kg−1 was applied 
to the freewheel and remained constant during the 30 s. 
Subjects were instructed to sit down throughout the test. 
Strong verbal encouragement was given throughout to 
ensure a maximal effort was provided. An incremental 

test to exhaustion was performed to determine  VO2max. 
The test started with 3  min of cycling at 3  W ×  kg−1 
(rounded down to nearest 10 W) and then increased by 
35  W every 2  min until voluntary exhaustion or failure 
to maintain ≥ 60 rpm. Strong verbal encouragement was 
given throughout.  VO2 was measured using an Oxycon 
Pro (Jaeger GmbH, Germany) with a mixing chamber 
and a 30  s sampling time. Gas sensors were calibrated 
according to instructions by the vendor before every test. 
Maximal oxygen uptake was determined as the mean of 
the two highest values attained during exercise from any 
30-s period.

The Juntendo cohort: 23 Japanese subjects (Table  2) 
were recruited to examine the associations between 
RNA expression profiles and muscle fiber composition 
in the Japanese population. All subjects gave their signed 
informed consent before inclusion in the study. The study 
protocols were approved by the Ethics Committees of 
Juntendo University and were performed in accordance 
with the Declaration of Helsinki. No additional tests were 
performed in this cohort.

Muscle biopsies and histology
In the MSAT cohort (Table  1), muscle biopsies were 
taken from the vastus lateralis muscle under sterile con-
ditions and local anesthesia (1% lidocaine) by using a 
5-mm Bergström needle and frozen in liquid nitrogen. 
The biopsies were taken within 5  min after the Win-
gate test. Serial Sects. (10 μm) were cut using a cryostat 
at − 20  °C. Myofibrillar ATPase histochemistry was per-
formed by preincubation at pH 4.4, 4.6, and 10.3 to iden-
tify fiber types [44]; the proportion of fiber types (i.e., 
type I, IIa, or IIx) were calculated as the number of each 
fiber type, divided by the total number of fibers in the 
section. Computer image analysis was performed using 
image analysis equipment (BioPix IQ 2.0.16 software, 
BioPix AB, Sweden).

In the Juntendo cohort (Table 2), muscle biopsies were 
taken from the vastus lateralis muscle under sterile 
conditions and local anesthesia (1% lidocaine) by using 
a disposal needle biopsy instrument (Max Core; C. R. 
Bard, Covington, GA). The biopsies were collected from 
approximately 15  cm above the patella in both legs of 
each subject under ultrasound imaging (Noblus; Aloka, 
Tokyo, Japan) and avoided the inclusion of subcutane-
ous fat and the subfascial and myotendinous parts as far 
as possible. In addition, any visible non-muscle tissues 
(e.g., adipose tissue) were removed from the biopsy sam-
ples. Samples were frozen immediately in liquid nitrogen 
and stored at − 80℃ until further analysis. Myosin heavy 
chain (MyHC) protein isoforms were assessed as mark-
ers of muscle fiber composition. Frozen muscle sam-
ples were homogenized in ice-cold lysis buffer [50  mM 
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HEPES (pH 7.4), 10  mM EDTA, 4  mM EGTA, 50  mM 
β-glycerophosphate, 25  mM NaF, 5  mM  Na3VO4], con-
taining a phosphatase inhibitor (PhosSTOP tablet; Roche 
Diagnostics, Indianapolis, IN), and a protease inhibi-
tor (Complete tablet; Roche Diagnostics). The lysates 
obtained were centrifuged at 10,000 g for 10 min at 4℃. 
An insoluble pellet, obtained after centrifugation, was 
suspended in a sufficient volume of SDS sample buffer 
[30% glycerol, 5% β-mercaptoethanol, 2.3% SDS, 0.05% 
bromophenol blue, and 62.5 mM Tris–HCl (pH 6.8)] and 
boiled at 95℃ for 5 min. MyHC composition was deter-
mined by glycerol SDS-PAGE, according to Kakigi et al. 
[45]. Briefly, protein samples were resolved by perform-
ing glycerol SDS-PAGE [stacking gel: 4% acrylamide, 
34.7% glycerol, and 125  mM Tris–HCl (pH 6.8); sepa-
rating gel: 8% acrylamide, 33.3% glycerol, and 375  mM 
Tris–HCl (pH 8.3)]. Electrophoresis was started at 60 V 
with stacking gel at 8℃. The voltage was set to 150 V and 
run for 18 h at 8℃ when the tracking dye had entered the 
separating gel completely. After separation, the gels were 
stained with Coomassie brilliant blue (Biosafe G250; Bio-
Rad Laboratories, Hercules, CA) and rinsed repeatedly 
with water. Each gel was scanned using a calibrated den-
sitometer (ChemiDoc Touch Imaging System; Bio-Rad 
Laboratories), and the relative proportion of MyHC-I, 
MyHC-IIa, and MyHC-IIx were determined using the 
calibrated densitometer (ChemiDoc Touch Imaging Sys-
tem) and analytical software (Image Laboratory software 
version 5.2.1; Bio-Rad Laboratories).

RNA extraction and totRNAseq analysis
In the MSAT cohort, RNA was extracted from 25 to 
30  mg of muscle biopsies using a TissueLyser II (Qia-
gen) and the miRneasy Mini Kit (Qiagen). The RNA 
concentration was determined using a NanoDrop 
ND-1000 spectrophotometer (A260/A280 > 1.8 and 
A260/A230 > 1.0 (NanoDrop Technologies, Wilming-
ton, DE, USA). RNA integrity was verified using the 
2200 TapeStation instrument (Agilent Technologies, 
CA, USA), where all samples had an average RNA integ-
rity number (RIN) above 8. In the Juntendo cohort, fro-
zen muscle samples were crushed with 5.0-mm zirconia 
beads using a Micro Smash MS-100R (Tomy Seiko, 
Japan) at 3000 rpm twice for 15 s at 2 °C. The total RNA 
was extracted from muscle samples using TRIzol® Rea-
gent (Thermo Fisher Scientific, Waltham, MA, USA) 
according to the manufacturer’s protocol. RNA concen-
tration and purity were checked using a NanoDrop 8000 
UV–Vis Spectrophotometer (Thermo Fisher Scientific, 
Wilmington, DE, USA). RNA integrity was verified using 
the 2200 TapeStation instrument (Agilent Technologies, 
CA, US), where all samples had an average RNA integrity 
number (RIN) above 8.

All samples from both the MSAT and Juntendo 
cohorts were sequenced at Lund University using 
800 ng input RNA. Library preparation was made using 
the TruSeq Stranded Total RNA Library Prep Kit with 
Ribo-Zero Human/Mouse/Rat Set A (Illumina), and 
the 75  bp paired-end sequencing was performed on a 
NextSeq instrument using the NextSeq® 500/550 High 
Output Kit v2 (150 cycles) (Illumina). The sequenc-
ing quality was checked with fastQC v0.11.9 (http:// 
www. bioin forma tics. babra ham. ac. uk/ proje cts/ fastqc) 
and multiQC [46] v1.9. Gene expression was assessed 
using Salmon [47] v1.2.1. Exon expression was obtained 
by mapping reads with STAR [48] v2.7.6 and counting 
with featureCounts [49] v2.0.1 (options: -p -f -C -O). 
We used the GRCh38 Ensembl v77 [50] as a reference 
genome. We used the Seqtk tool (https:// github. com/ 
lh3/ seqtk) for gradual random downsampling of the 
MSAT data and applied Salmon for quantifying gene 
expression of the downsampled RNAseq data. The 
quantified gene expression for each downsampling iter-
ation was normalized with TMM [51], and deconvo-
lution analysis was performed using the gene markers 
identified for slow- and fast-twitch human clusters in 
the snRNAseq data as described above. We computed 
the Spearman correlation coefficient and mean square 
deviation between predicted and true fiber type com-
position for each downsampling iteration.
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colored by the cell cycle annotation obtained from the CellCycleScoring 
function from Seurat workflow. No obvious cluster formation based on the 
cell cycle can be observed from neither the PCA nor the tSNE plot.
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