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Abstract

Striated muscles express an array of sarcomeric myosin motors that are tuned to accomplish specific tasks. Each
myosin isoform found in muscle fibers confers unique contractile properties to the fiber in order to meet the
demands of the muscle. The sarcomeric myosin heavy chain (MYH) genes expressed in the major cardiac and
skeletal muscles have been studied for decades. However, three ancient myosins, MYH7b, MYH15, and MYH16,
remained uncharacterized due to their unique expression patterns in common mammalian model organisms and
due to their relatively recent discovery in these genomes. This article reviews the literature surrounding these three
ancient sarcomeric myosins and the specialized muscles in which they are expressed. Further study of these ancient
myosins and how they contribute to the functions of the specialized muscles may provide novel insight into the
history of striated muscle evolution.
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Background
Striated muscles are comprised of many heterogeneous
and highly specialized fibers. Skeletal muscle fibers are ex-
tremely adaptable and can meet the varying demands of
muscles by responding to changes in environmental cues
in several ways. These muscle fibers can remodel their
structure and contractile properties, largely by reprogram-
ming the gene expression profiles of sarcomeric compo-
nents including myosin motor proteins. Myosin produces
the force necessary for a variety of cellular movements by
hydrolyzing ATP and interacting with actin filaments. The
myosin superfamily encodes 18 distinct classes of myosin
motors, which are found ubiquitously in eukaryotes and
participate in a variety of cellular motile processes (see
Hartman and Spudich [1] for review). A subset of class II
myosins, those that power muscle contraction in striated
muscles, will be the focus of this review. The class II my-
osin heavy chain (MyHC) protein is comprised of two
functional units, a globular motor domain that contains
the catalytic ATPase site and binds actin and an α-helical
coiled-coil rod domain that dimerizes and assembles into
bipolar thick filaments (Fig. 1a). Striated muscle has a

highly organized ultrastructure, consisting of a repeating
contractile unit called the sarcomere. Within the sarco-
mere, myosins assemble into bipolar thick filament struc-
tures where the myosin motor domains protrude off the
surface to interact with neighboring actin filaments
(Fig. 1b). Myosin thick filaments and actin thin filaments
interdigitate and slide past one another to cause sarco-
mere shortening in a concerted motion resulting in
muscle contraction. This review describes the most an-
cient sarcomeric myosins, which have largely escaped
characterization due to their unique expression patterns,
variable expression levels across species, and relatively re-
cent annotation, and provides an overview of the special-
ized skeletal muscles in which they function.

Sarcomeric myosin genes
Vertebrates express 11 sarcomeric myosin heavy chain
(MYH) genes in their striated muscles (Fig. 2); however,
the expression level and pattern varies greatly across
species, developmental timepoint, and muscle type [2,
3]. All 11 MYH genes are expressed in mammalian stri-
ated muscles, albeit some in extremely low abundance
and some localized to just one or two specialized skeletal
muscle fibers. These genes, their protein products, and
muscle type of expression are listed in Fig. 2. Though
humans encode MYH4 and mRNA has been detected in
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extraocular [4] and jaw muscles [5], as well as in cases of
Duchenne muscular dystrophy [6], this isoform is not
expressed at the protein level in humans. Furthermore,
MYH16 is a pseudogene in humans and does not pro-
duce any functional protein [7]. However, other mam-
mals express MYH4 and MYH16 at the protein level in
fast-twitch skeletal muscle fibers (known as Type II fi-
bers), alongside the other skeletal muscle-specific my-
osin isoforms [8, 9]. MYH6 (α-MyHC) and MYH7
(β-MyHC) are known as the cardiac myosin isoforms
and are expressed in the mammalian heart. However,
MYH7 is also the dominant isoform expressed in

slow-twitch skeletal muscle fibers (also known as Type I
fibers), and both MYH6 and MYH7 are found in certain
specialized skeletal muscles. Finally, recent genomic ana-
lysis identified MYH7b and MYH15, which are expressed
in various specialized muscles of mammals such as the
extraocular muscles and muscle spindles. Sequence iden-
tity is extremely high among the human sarcomeric my-
osin genes (Fig. 3), and yet, each myosin’s contractile
properties, such as ATP turnover and force production,
vary from isoform to isoform [10–12]. These variations
in motor properties confer unique characteristics to dif-
ferent muscle types, and the varied myosin composition

Fig. 1 a Sarcomeric myosins are hetero-hexameric complexes composed of two heavy chains (blue) that are each bound by two non-identical
light chains (essential light chain, red and regulatory light chain, yellow). The myosin heavy chain is distinguished by two functional units, a
motor domain that contains the catalytic ATPase site and binds actin and an α-helical coiled-coil rod domain that dimerizes and assembles into
biopolar thick filaments. b Within the sarcomere, the myosin heavy chain rod drives assembly of biopolar thick filaments (blue) where the myosin
motor domains protrude off the surface to interact with the actin thin filament (gray)

Gene Ch. Alias Muscle type 

MYH16 7 MyHC-masticatory Specialized* 

MYH15 3 N.S. Specialized 

MYH7b 20 N.S. Specialized 

MYH13 17 MyHC-extraocular Specialized 

MYH8 17 MyHC-perinatal Developmental 

MYH4 17 MyHC-IIb Fast skeletal 

MYH1 17 MyHC-IIx/d Fast skeletal 

MYH2 17 MyHC-IIa Fast skeletal 

MYH3 17 MyHC-embryonic Developmental 

MYH7 14 -MyHC 
Cardiac and slow 

skeletal 

MYH6 14 -MyHC Cardiac 

*MYH16 is a pseudogene in humans, but is expressed in specialized muscles of 
other vertebrates. 

Fig. 2 Sarcomeric myosin heavy chain genes, human chromosome (Ch.) location, protein alias (N.S. refers to no specification), and primary muscle
tissue of expression are listed in the table. The phylogeny on the left indicates the evolutionary relationship between the human sarcomeric myosin
heavy chain genes (this cladogram does not reflect accurate scale). Cladogram adapted with permission of the publisher from Stedman et al. 2004,
copyright ©2004, Springer Nature. Scheme adapted with permission of the publisher from Rossi et al. 2010, copyright ©2010 John Wiley and Sons
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within skeletal muscle fibers allows for a wide range of
contractile velocities and forces among different muscle
types [11, 13]. For example, MyHC-embryonic and
MyHC-perinatal are expressed in developing skeletal
muscles when the demands on muscle are lower due to
decreased load [2]. In adult skeletal muscle, Type II fi-
bers express varying ratios of the adult skeletal muscle
myosin isoforms, which have relatively high ATP-turn-
over rates and confer fast contractile properties to these
fibers [10]. In contrast, β-MyHC, the major human car-
diac isoform also found in slow Type I skeletal muscle
fibers, is the slowest ATPase of all the human sarco-
meric myosin isoforms characterized to date [11, 14].
Thus, sarcomeric myosin genes have adapted to have di-
verse functions, which meet the demands of various
muscle types as they have evolved.
In addition to the high amino acid sequence conserva-

tion of sarcomeric myosins, the organization of the car-
diac and skeletal muscle myosins in two tandemly linked
genomic clusters is conserved across mammalian species
[15]. In the human genome, a 350 kilobase (kb) segment
on chromosome 17 contains the six skeletal muscle

myosin genes (MYH3, MYH2, MYH1, MYH4, MYH8,
MYH13, in order of tandem linkage) [15]. The two car-
diac myosin isoforms, MYH6 and MYH7, are in a second
cluster on chromosome 14, separated by 4.5 kb [16].
Conversely, the three most recently discovered ancient
myosins are physically unlinked to any other MYH gene
in the genome; MYH7b is encoded on chromosome 20,
MYH15 is found on chromosome 3, and MYH16 is on
chromosome 7 [17]. The broad conservation and clus-
tering of the MYH genes suggests two things. First, this
genomic organization is important for the genes’ regula-
tion, though they are not organized temporally [15]. Sec-
ondly, they suggest that this gene family resulted from
gene duplication events of ancestral myosins [15, 17].

Discovery of the ancient myosins
Prior to the technological advances that define the gen-
omics age, the major sarcomeric myosins expressed in
skeletal and cardiac muscle were extensively studied and
characterized due to their abundance in and accessibility
of these tissues. However, as the human genome was be-
ing annotated, three additional class II myosin genes

Fig. 3 Amino acid sequence identity comparison of human sarcomeric myosin heavy chain proteins: full length sequences (a), rod domain sequences
(b), and motor domain sequences (c). Sequences were obtained from NCBI and alignments were performed using NCBI protein BLAST. NCBI reference
sequence identifiers: NP_055796.1 (MYH15), NP_065935.3 (MYH7b), NP_003793.2 (MYH13), NP_002463.2 (MYH8), NP_060003.2 (MYH4), NP_005954.3
(MYH1), NP_001093582.1 (MYH2), NP_002461.2 (MYH3), NP_000248.2 (MYH7), NP_002462.2 (MYH6). *Human MYH16 amino acid sequence
was deduced by the predicted mRNA sequence (Gencode V28 Transcript Annotation ENST00000439784.7) up to the frameshift mutation
in codon 660 (within the motor domain)
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were discovered: MYH7b,1 MYH15, and MYH16. In
2002, Desjardins et al. identified these three novel MYH
sequences and determined their genomic locations by
mapping these genes to cDNA databases. Deduced pro-
tein sequences of these genes revealed conserved se-
quence motifs and homology to known sarcomeric
myosins, indicating that these genes are class II sarco-
meric myosins [17]. The same study predicted each my-
osin motor’s contractile speed by comparing the
sequences to characterized sarcomeric myosin motor
domains; MYH7b and MYH15 were suggested to be
slow isoforms whereas the protein encoded by MYH16
(MyHC-masticatory) was predicted to be a fast isoform.
However, activity assays have since demonstrated that
MyHC-masticatory is more forceful rather than fast [18].
Molecular evolutionary analysis of the three novel myo-
sins indicated that these genes are ancient and predate
the well-studied skeletal and cardiac isoforms and the di-
vergence of a smooth muscle MYH gene [17]. In fact,
the ancient myosins exhibit a lower sequence identity in
their full-length sequences and individual motor and rod
domains to the sarcomeric class II myosins than any
other sarcomeric myosin (Fig. 3), supporting the notion
that they are more distantly related to the well-charac-
terized skeletal and cardiac myosin isoforms. Since the
initial discovery of the three ancient myosins, orthologs
have been found in distant species including fish, chick-
ens, snakes, and frogs, indicating that these ancient myo-
sins were present in a common ancestor of vertebrates
[19–21]. Interestingly, MYH7b and MYH15 play a
prominent role in the heart and skeletal muscles of cer-
tain species like chicken and snakes, whereas in mam-
mals, the only muscles that these myosin motors
function in are highly specialized muscles (Leinwand
unpublished [21]). The MYH16 gene is expressed ex-
clusively in muscles that originate from the first
pharyngeal arch; MYH16 is primarily expressed in the
muscles of mastication but is also present in the ten-
sor veli palatini and tensor tympani of certain species
[22]. While MYH16 expression has been observed in
the jaw muscles of some vertebrates including cats
[23] and crocodiles [24], a frameshift mutation led to
the loss of MYH16 expression in humans [7]. Though
these ancient myosins are less studied, they are
clearly set apart from the striated isoforms that have
been extensively characterized and shown to play
major roles in mammalian heart and skeletal muscle
function. Little is known about why these myosins are
absent from conventional striated tissues of mammals,
unlike in reptiles and birds, and the evolutionary
pressures that resulted in differential expression of
these myosins across species. The three ancient myo-
sins will be further discussed in the subsequent sec-
tions of this review.

Evolutionary perspective of the myosin genes
In order to understand the evolutionary relationships be-
tween the myosin genes within and across species, it is
important to consider a broad perspective of muscle
evolution itself. Smooth and striated muscle cells are
unique to specific members of the animal kingdom [25,
26]. Originally, animal striated muscles were presumed
to share a common origin based solely on the ultrastruc-
tural similarity of the highly ordered striated muscle
tissue across phyla [27, 28]. However, molecular phylo-
genetic analysis encompassing animals, fungi, plants,
and protists now strongly suggests that striated muscles
are a result of convergent evolution. In one study, Stein-
metz and colleagues discovered a core set of muscle
proteins in organisms that predate the evolution of
multicellular organisms [29]. Previously, researchers hy-
pothesized that a gene duplication event gave rise to two
distinct MYH orthologs in bilaterians, accounting for
the presence of both visceral smooth muscle and som-
atic striated muscle [30, 31]. More recent genome min-
ing revealed that this duplication event occurred before
the origin of muscle cells and that at least two distinct
myosin isoforms were present in a shared common an-
cestor of all animals [29]. These two ancient myosin iso-
forms are referred to as SM-MHC and ST-MHC and
have since diversified from each other with respect to as-
sembly, contractile function, and cell type [32]. Smooth
and nonmuscle myosin orthologs resulted from duplica-
tions of SM-MHC, while ST-MHC underwent duplica-
tion events to produce the current suite of sarcomeric
myosin isoforms present today including MYH7b,
MYH15, and MYH16, which were the first sarcomeric
myosin genes to diverge from the ancestral myosin genes
(Fig. 2) [17, 29].
These three ancient myosins are expressed in mamma-

lian specialized muscles (Fig. 4), which is logical as the
majority of these tissues are thought to predate conven-
tional striated muscles. In this review, we define special-
ized muscles as skeletal muscles that have adopted a
unique structural organization to perform a specific
function, while cardiac muscle and trunk/limb skeletal
muscles are referred to as conventional muscles. Special-
ized muscles include extraocular muscle, muscle spin-
dles, and masticatory muscle, which will be further
discussed in this review [33]. It is worth noting that the
intrinsic laryngeal muscles are also considered to be spe-
cialized muscles, but are not known to express any of
the ancient myosins and are therefore outside the scope
of this review. The three ancient myosins appear to have
niche roles in specialized mammalian muscles, but given
their diverse expression levels and variable abundance
across species, several questions remain. Are these myo-
sins required for the specific function of the specialized
muscles in which they reside? Could lack of selective
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pressure lead to the replacement of these myosins by a
more diversified set of sarcomeric myosins? Can these
myosins aid our understanding of early striated muscle
evolution? In this review, we will first introduce the spe-
cialized muscles and then turn our focus to MYH7b,
MYH15, and MYH16 and their roles in these specialized
muscle types.

The specialized muscles
Extraocular muscles
Extraocular muscles (EOMs) are the muscles that sur-
round the eyeball and control a variety of diverse and
complex eye movements. These movements are neces-
sary for eyesight precision and range from fast move-
ments to slower pursuit and vergence movements to
fixation [34]. Six EOMs control eye movement across
vertebrates including four rectus muscles (medial, lat-
eral, inferior, and superior) and two oblique muscles

(superior and inferior). Each EOM originates from the
posterior of the eyeball near the optic nerve and attaches
to the front of the eyeball with the exception of the in-
ferior oblique muscle [35]. The medial and lateral rectus
muscles control horizontal eye movements. Vertical eye
movement is achieved through the coordinated action of
the superior and inferior rectus and oblique muscles, the
latter of which also function in torsional movements
[34–36]. Mammals possess an additional principal EOM
called the levator palpebrae, which controls eyelid eleva-
tion [35]. Each EOM compartmentalizes into two layers,
the thin orbital layer that lies along the EOM surface fa-
cing the bony orbital wall and the thicker global layer
that faces the eyeball globe [37]. The orbital layer and
global layer have distinct features as does the marginal
zone, a third layer described in human EOM that lies on
the orbital layer’s outer surface [38]. Within these layers,
there are six distinct fiber types that participate in all eye
movements, and they are classified by fiber location

Fig. 4 a Longitudinal section of rat extraocular muscle stained with MYH7b (red) and α-actinin (green) adapted with permission of the publisher
from Rossi et al. 2010, copyright©2010 John Wiley and Sons. b, c Electron micrograph of muscle spindle chain fiber (b) characterized by clearly
defined sarcomeres and large mitochondria and bag fiber (c) characterized by less well-defined sarcomeres and fewer mitochondria Reprinted
with permission of the publisher from Ovalle et al. 1971, ©1969, CCC Republication. d, e Immunoperoxidase staining of MyHC-masticatory (d) and
β-MyHC (e) in cat masseter muscle sections shows the majority of fibers are comprised of MyHC-masticatory and only a small proportion of fibers
express β-MyHC, in contrast to humans, which express β-MyHC as the predominant isoform. Reprinted with permission of the publisher from
Kang et al. 2010, ©2010, SAGE Publications
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(global or orbital layer), innervation (singly or multiply
innervated fibers), and histochemical features [34, 37].
Mammalian EOMs express an unusually high number

of striated muscle myosin genes including developmental
and adult isoforms as well as an EOM-specific isoform. In
total, mammalian EOMs express 10 of the 11 sarcomeric
myosin isoforms: the adult skeletal myosins, MyHC-IIa,
MyHC-IIx/d, and MyHC-IIb; the developmental isoforms,
MyHC-embryonic and MyHC-perinatal; the cardiac iso-
forms, β-MyHC and α-MyHC; the EOM-specific isoform,
MyHC-extraocular; and two of the ancient myosins,
MYH7b (Fig. 4a) and MYH15 [21, 39–44]. Interestingly,
the extraocular and laryngeal muscles are the only tissues
that express MYH13, a gene first identified by Wieczorek
et al. and later discovered to evolutionarily predate the fast
skeletal isoforms [45–47]. The MYH13 protein product,
MyHC-extraocular, was categorized as a fast myosin and
observed in the innervation zone of both the EOM orbital
and global layers, likely contributing to fast eye move-
ments [47, 48]. Myosin isoform composition within the
EOMs varies with respect to the orbital and global layers
and within the muscle fiber longitudinally [41, 43, 49].
EOMs also exhibit heterogeneity in myosin composition
across species. In rodents, specific MYH isoforms appear
to be preferentially expressed in a certain layer [43],
whereas in humans most MYH isoforms are observed in
both layers [44]. Furthermore, many EOM fibers
co-express multiple myosins, resulting in extremely com-
plex expression patterns across species [43, 44, 48–50].
Based on this complex expression profile, it seems that
EOM function cannot be assigned to a specific layer or set
of myosin isoforms. Thus, it is likely that the comprehen-
sive myosin expression pattern in the EOMs is critical for
maintaining the demanding and diverse eye movements.
Gene expression profiling has revealed distinct differ-

ences between EOMs and other striated muscles, indi-
cating that EOMs are highly specialized muscles. DNA
microarray was used to identify differential gene expres-
sion between EOM and representative cardiac, skeletal,
and smooth muscles, revealing that EOM is substantially
different than other striated muscles [51]. Expression
data also revealed that EOM has a distinct energy me-
tabolism profile where genes related to glycogen metab-
olism are downregulated relative to skeletal muscles [51,
52]. Gene expression profiling has also identified a regu-
latory gene found preferentially in EOMs called the
paired-like homeodomain transcription factor 2 (Pitx2)
[52, 53]. Unlike in conventional skeletal muscles, Pitx2 is
required for EOM differentiation and development in
mice and appears to regulate gene expression related to
MYH isoforms, contractility, and EOM fiber size [53–
56]. Pitx2 is also highly expressed in a population of
EOM myogenic precursor cells in healthy and muscular
dystrophy mice, suggesting a role for Pitx2 in the EOM’s

regenerative capabilities that may contribute to preferen-
tial EOM sparing in certain diseases [57].
One yet unresolved question in the field pertains to

why EOM is preferentially involved in or spared in cer-
tain diseases. The EOMs are preferentially impacted in
myasthenia gravis, an autoimmune disease that targets
acetylcholine receptors of the neuromuscular junction.
This is hypothesized to be attributable to the differences
in the number and isoforms of acetylcholine receptors
and innervation properties at the neuromuscular junc-
tion of EOM versus typical skeletal muscles [34, 58].
Likewise, differences in the immune response between
EOMs and skeletal muscle likely underlie the selective
involvement of the EOM in the autoimmune disease
Graves’ ophthalmopathy [59, 60]. Conversely, despite the
widespread muscle degeneration that characterizes mus-
cular dystrophy, the EOMs are spared in this disease and
patients retain normal EOM function [61]. Expression
profiling revealed that there are no clear changes in gene
expression in EOMs of a muscular dystrophy mouse
model, indicating that EOM remains unaffected in the
disease state. Thus, the characteristics that distinguish
EOM from conventional skeletal muscles may be pro-
tective in this disease [62, 63]. A current hypothesis in
the field predicts that a population of myogenic precur-
sor cells mediates the EOM’s regenerative capacity and
contributes to EOM sparing in muscular dystrophy [64].
In fact, EOMs of aged and muscular dystrophy mice re-
tain an enriched population of muscle precursor cells
with proliferative capacity compared to limb skeletal
muscle [64, 65]. Though the precise mechanism remains
undefined, the EOM’s susceptibility and protection from
certain diseases likely stems from a combination of its
unique features, including distinct myosin isoform ex-
pression patterns, fiber types, gene expression profile,
and developmental requirements.

Muscle spindles
Muscle spindles are the innervated sensory structures
buried within conventional striated muscles that relay
information about muscle length and stretch to the cen-
tral nervous system [66–68]. Muscle spindles provide es-
sential sensory input about the spatial placement,
extension, and contraction rate of muscles to the central
nervous system, which is required for effective voluntary
control of striated muscles [66, 69]. They provide a static
and a dynamic stretch response by detecting both the
initiation and the continuation of stretch, respectively
[66, 69, 70]. Muscle spindles are differentially distributed
throughout the body’s muscles and are typically focused
along axial regions and in smaller muscles, though the
reason for this distribution is unclear [71, 72]. Mice defi-
cient in Egr3, a transcription factor essential for muscle
spindle development, have severe phenotypes including
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loss of voluntary muscle control, scoliosis, resting
tremors, and eyelid sagging, even though the extrafusal
muscle fibers are normal [69]. Thus, muscle spindles are
necessary for normal locomotion.
The general muscle spindle morphology consists of a

bundle of intrafusal muscle fibers that are separated
from the extrafusal fibers of the surrounding skeletal
muscle [66]. There are three types of intrafusal muscle
fibers: bag1, bag2, and chain fibers [66–68, 73]. Bag and
chain type fibers are distinguished by their nuclear dis-
tribution within the muscle fiber; bag fibers have cen-
trally located nuclei, whereas chain fiber nuclei are
equally distributed along their length [67]. In addition,
electron microscopy studies have shown distinct sarco-
meric, myofibril, and mitochondrial organization be-
tween these two muscle spindle fiber types. Chain fibers
have clearly defined myofibril units and numerous, large
mitochondria that span one to two sarcomeres each
(Fig. 4b) [74, 75]. The organization in bag fibers is less
clear, with less well-defined sarcomeres that are tightly
packed and have fewer, smaller mitochondria than
chain-type fibers (Fig. 4c) [74, 75]. Bag1 fibers are distin-
guished from bag2 fibers by a lower ATPase activity and
contain a larger proportion of slow myosin isoforms
such as β-MyHC [66, 76]. Functionally, bag1 fibers are
solely responsible for the dynamic stretch response,
whereas both bag2 and chain fibers contribute to the
static stretch response [66, 67]. Stretch information, and
therefore proprioception, is passed through the afferent
fibers that innervate the muscle spindles to the central
nervous system [66, 67].
The muscle spindle acts as the primary stretch recep-

tor of the muscle to relay feedback information to the
nervous system, which in turn regulates the length and
tone of the extrafusal fibers. The myosin-actin cross-
bridge is essential to this muscle spindle function. The
initial stretch response recorded by the spindle is
thought to be the result of breaking static crossbridges
by stretching the muscle [66, 67, 77]. This causes
changes in spindle stiffness, triggering mechanosensitive
ion channels to initiate a signal cascade [67, 77]. The
crossbridge reformation rate also creates signals down-
stream of the original stretch, which influences whether
or not the muscle remains extended [66]. Myosin com-
position therefore plays an important role in muscle
spindle response rate. There is a wide range of sarco-
meric myosins expressed in muscle spindles across spe-
cies, including β-MyHC, α-MyHC, MyHC-embryonic,
MyHC-perinatal, and MyHC-IIa [76]. Two of the ancient
myosins, MYH7b and MYH15, have also been found in
muscle spindles [21]. Keeping in mind that bag1 and
bag2 fibers are differentiated by their variable ATPase
content, it is probable that the myosin expression profile
of each intrafusal muscle fiber is an important

determinant of its activity [66]. The need to finely tune
the crossbridge dynamics of different muscle spindles
present in the body could explain why the two ancient
myosins, MYH7b and MYH15, are expressed in muscle
spindles. It is possible that the expression levels of these
ancient myosins contribute to the precise contractile
needs of muscle spindles in order to garner a robust
stretch response in different muscles.

Masticatory muscles
The masticatory muscles move the jaw to accomplish a
wide range of activities including swallowing, chewing,
speaking, and infantile suckling. The diverse functions of
the jaw muscles are in part due to their unique struc-
ture, which allows the muscle to exert precise control
over the mandible (i.e., detached lower jaw bone). In
humans, four muscles comprise the masticatory appar-
atus: the masseter, temporalis, medial pterygoid, and lat-
eral pterygoid. The first three muscles function to
elevate the jaw, while the lateral pterygoid is a
jaw-opening muscle [78]. The masseter muscle is the
most superficial masticatory muscle, originating from
the zygomatic arch (i.e., cheekbone) and attaching to the
mandible. The masseter is the most powerful of the four
muscles allowing for forceful jaw closures. The tempor-
alis muscle originates in a shallow depression on the side
of the skull known as the temporal fossa and converges
into a tendon that attaches to the mandible. The tem-
poralis muscle can retrude the jaw as well as close the
jaw. The last of the jaw-closing muscles is the medial
pterygoid. Both the medial pterygoid and lateral ptery-
goid are attached to the inner surface of the jaw and can
protrude the mandible. The lateral pterygoid is respon-
sible for moving the jaw laterally and is also involved in
protruding and depressing the mandible [78].
The masticatory unit in humans has evolved to be a

highly specialized muscle group. The complex muscle
fiber architecture, heterogeneity, and myosin compos-
ition of the masticatory muscles allow for a wide range
of forces and contractile velocities. The mastication
muscles are made up of a variable population of pure
and hybrid muscle fibers. Pure fibers expressing a single
myosin isoform are found for slow β-MyHC, MyHC-IIa,
and MyHC-IIx/d. Hybrid fibers expressing a combin-
ation of these isoforms, as well as MyHC-embryonic and
α-MyHC are also present [79]. Immunohistochemistry
studies on male and female human cadavers demon-
strated that all four masticatory muscles express ap-
proximately 70% β-MyHC. The temporalis and masseter
muscles show a relatively equal distribution of the
remaining MyHCs present, while the pterygoids show a
marked increase in MyHC-IIa and α-MyHC compared
to MyHC-IIx/d and MyHC-embryonic [80]. MYH4 tran-
scripts are abundantly expressed without accompanying
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MyHC-IIb protein expression [5], similar to previous re-
ports of MYH4 expression in other human skeletal mus-
cles [6, 8]. The fiber-type population within the four jaw
muscles varies greatly, as does fiber size itself [80, 81].
Interestingly, differences in fiber composition between
males and females have been observed in the masseter
muscle of rabbits [82] and mice [83]. In humans, a sig-
nificant increase in the cross-sectional area (CSA) of
masseter Type I and Type II fibers has been observed in
males compared to females [84–86]. Hence, the masseter
muscle appears to be sexually dimorphic in certain spe-
cies of mammals. Diverse expression of specific myosin
motors in the masticatory muscles allows for energy
consumption at the cellular and animal level to be
fine-tuned via the non-redundant ATPase properties in-
herent to different isoforms [87]. This complex sarco-
meric myosin expression pattern suggests that the
masticatory muscle is highly adaptable. Indeed, changes
in fiber type, CSA, and the contractile mechanics of jaw
muscles have been observed in response to diet [88–97],
aging [98–105], and craniomandibular disorders [85].
Alterations in craniofacial morphology have been cor-

related with the composition and function of temporalis
and masseter muscles, but it is unclear whether the jaw
muscles are the driving force behind craniofacial mor-
phological alterations or if the muscle function adapts to
changes in external stimuli from the skeleton. There are
three basic facial forms categorized for humans: long,
average, and short [106]. There is greater facial morph-
ology variation in individuals with weak jaw muscles
[107], while stronger and thicker jaw muscles produce
more uniform facial morphological features suggesting
that if the masticatory muscle is too weak, it exerts less
influence over facial morphology [108]. The jaw muscles
are hypothesized to determine facial dimensions of
humans [109]. The jaw-closing muscles of short-faced
individuals have thicker fibers [109, 110], while those of
long-faced individuals have thinner fibers [111, 112], and
produce lower molar bite forces [113–115]. Differences
in fiber type are also evident in people with different fa-
cial forms. Rowlerson et al. observed that patients with
an open bite presented with a higher proportion of slow
Type I fibers, while patients affected by deep bite pre-
sented with a higher proportion of fast Type II fibers
[116]. Boyd et al. observed that a longer face correlated
with more Type II fibers in masseter muscles [117]. In
addition, several animal studies indicate that the jaw
muscles may play a role in skull growth and develop-
ment (for review see Kiliaridis [108]). Surgical manipula-
tion of the temporalis muscle in young rabbits directly
resulted in changes to the local skull morphology and
cranial development, although this was not correlated
with any specific myosin isoform [118]. A similar study
in primates revealed that altering the temporalis and

masseter muscle attachments could alter craniofacial
growth patterns [119]. Thus, the masticatory muscles
are a complex unit that attach to the skull and jaw and
can influence the phenotypic characteristics of the
cranium.
The jaw made its first appearance in the evolutionary

timeline over 400 million years ago when gnathostomes,
or jawed vertebrates, first diverged [120]. It is thought
that the jaw evolved through adaption of ancient gill car-
tilages [121]. The predatory success of early gnathos-
tomes is largely attributed to the presence of the jaw
[122], and today, gnathostomes make up 99% of verte-
brate species. With the radiation of vertebrate and mam-
malian speciation, the jaw has had ample time and
opportunity to evolve to the functional needs of a wide
range of animals. The MYH16 gene is the oldest of the
sarcomeric myosins present in vertebrates and is primar-
ily expressed in jaw muscles. MyHC masticatory, which
is associated with a high contraction force, has been
observed in certain carnivorous species, such as sharks
and cats (Fig. 4d, e) [123], where forceful jaw closures
would be advantageous for predation. The jaw muscles
have evolved to serve functions that are distinct from
conventional skeletal muscle (locomotion and postural
tonicity). By expressing a wide variety of myosins, mas-
ticatory muscle is able to regulate the force, speed, and
energy efficiency of contraction in order to adapt to the
ever-changing environments and demands of various
animals.

The ancient myosins
MYH7b
Human MYH7b is a 27-kb gene found on chromosome
20. MYH7b shares the highest sequence identity to
MYH7 (β-MyHC) and MYH6 (α-MyHC), reaching 69%
sequence identity at the amino acid level (Fig. 3). In
addition, each of these three myosin genes harbors an
intronic microRNA; MYH6 encodes miR-208a in intron
27, MYH7 encodes miR-208b in intron 31, and MYH7b
encodes miR-499 in intron 19 [124, 125]. miR-208a is
cardiac myocyte-specific and has known roles in cardiac
stress response regulation, whereas miR-208b and
miR-499 play regulatory roles in the heart and have re-
dundant roles in skeletal muscle fiber-type specification
[124, 125]. Though MYH7b shares a high sequence
homology and features with the two human cardiac my-
osin isoforms, this myosin’s expression pattern and regu-
lation are unique in mammals.
MYH7b was first identified by Nagase et al. in an effort

to categorize previously unknown human genes [126].
The MYH7b sequence (designated KIAA1512) was
cloned from a human fetal brain cDNA library and
mapped to chromosome 20. Expression profiling by the
authors revealed that MYH7b RNA is highly expressed
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in the heart, skeletal muscle, adult, and fetal brain and
more lowly expressed in the ovary, kidney, lung, liver,
pancreas, and spleen [126]. As the human genome was
being annotated, Desjardins et al. identified MYH7b as
one of three ancient myosins belonging to the sarco-
meric myosin family of genes [17]. MYH7b transcripts
were confirmed in several conventional mammalian
muscles including the heart, soleus, tibialis anterior,
quadriceps, and diaphragm [21, 127]. A 2012 study by
Warkman et al. reported the presence of MYH7b pro-
tein in the mouse heart; however, this finding was later
retracted as this result was due to non-specific antibody
reactivity [128]. To date, MYH7b has not been detected
at the protein level in mammalian cardiac or skeletal
muscle. This discrepancy between MYH7b RNA and
protein expression in conventional muscles is due to a
non-productive splicing event in which the transcript is
produced, but undergoes some nonsense mediated
decay, while miR-499 expression is retained in these tis-
sues [127]. Despite this expression pattern in the heart
and skeletal muscle, MYH7b protein is present in spe-
cialized muscles of mammals including the EOMs and
muscle spindles. In rats, MYH7b was detected in EOM
orbital and global layers (Fig. 4a) and observed in vary-
ing abundance in muscle spindle bag1 and bag2 fibers
[21]. Both of these specialized muscles express many sar-
comeric myosins and carry out highly specific tasks.
Thus, MYH7b may have a role that uniquely fits a con-
tractile requirement of these muscles.
MYH7b transcripts capable of encoding protein have

also been observed in the mouse brain [127]. Corrobor-
ating this finding, Rubio et al. identified MYH7b in a
yeast two-hybrid screen designed to identify actin regu-
lators in the rat brain. Subsequently, this group used
siRNA to target MYH7b in cultured hippocampal neu-
rons and observed alterations in dendritic spine morph-
ology and excitatory synapse strength, indicating that
MYH7b contributes to dendrite structure and function
[129]. MYH7b is also implicated in several diseases that
involve both muscle and nonmuscle phenotypes. In
2014, Haraksingh et al. reported that compound hetero-
zygous mutations in MYH7b are associated with sensori-
neural hearing loss. Exome sequencing on a family with
sensorineural hearing loss in three children revealed two
mutations in MYH7b: a maternally inherited mutation in
the MYH7b motor domain and a paternally inherited
mutation in the MYH7b rod domain [130]. These are
the only known associations between MYH7b and deaf-
ness, and thus is an unusual occurrence. Whole exome
sequencing has also identified missense mutations in
MYH7b associated with left ventricular non-compaction
cardiomyopathy [131]. Recently, a genome-wide associ-
ation study (GWAS) identified associations between
congenital heart defects involving left-sided lesions and

chromosome 20q11, a region that includes MYH7b
[132]. Another GWAS aiming to identify new cutane-
ous melanoma risk loci identified significant associa-
tions with 20q11 and MYH7b [133]. However, the
variants associated with MYH7b are hypothesized to
be positional markers for genes associated with
melanoma-like ASIP, a pigmentation gene in the same
chromosomal region as MYH7b, rather than a disease
modifying variant [134, 135].
Though MYH7b does not appear to play a major role

at the protein level in conventional muscles of mam-
mals, MYH7b orthologs are found in fish, chickens,
snakes, and frogs and appear to have predominant roles
in the conventional muscles of these species. In chick-
ens, the MYH7b ortholog is expressed in the Purkinje fi-
bers of the heart, as well as slower skeletal muscles such
as the anterior latissimus dorsi (Leinwand unpublished
[21, 136]). The fish genome also contains MYH7b ortho-
logs, and it appears that gene duplication has resulted in
multiple MYH7b paralogs [19, 20]. For example, tora-
fugu have two gene duplicates of the MYH7b ortholog;
one is specifically expressed in slow skeletal muscle
whereas the other has broader expression in adult and
embryonic tissue [20]. Syntenic organization of MYH7b
is consistent in Xenopus, chickens, mice, and humans,
further validating the concept that this myosin is derived
from an ancient myosin found in an ancestor common
to these species [21, 137].

MYH15
MYH15 is encoded on human chromosome 3. Its gen-
omic sequence is unusually large, around 142 kb, and
genomic analysis led to the conclusion that it is one of
three ancient myosins found outside of the canonical
sarcomeric myosin clusters [17]. Since the identification
of MYH15 in humans, orthologs have been found in
chickens, snakes, and various mammals, though no such
ortholog has been found in teleost fish [20, 138]. The
MYH15 ortholog found in chickens is the major myosin
found in the adult ventricle and is also important for
embryonic development (Leinwand unpublished [138]).
These data suggest that MYH15 acts as a conventional
sarcomeric myosin. However, the expression pattern of
MYH15 in mammals does not follow that of a typical
sarcomeric myosin. Instead, MYH15 transcripts have
been observed in several brain regions, the testis, and
the pituitary gland [139, 140]. MYH15 RNA has also
been described as a long non-coding RNA found in the
ovaries of sheep and is suggested to be important for
fecundity in these animals [141, 142]. MYH15 protein
has been identified in mammalian muscle tissue via
immunostaining in rat EOMs and muscle spindles [21].
However, in humans, MYH15 protein has only been ob-
served in the pulmonary vascular epithelium and
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alveolar macrophages [143]. This unusual expression
pattern in mammals suggests a role for MYH15 outside
of muscle.
The role of MYH15 in muscle spindles is unclear. Muscle

spindle myosin expression profiles vary regionally through-
out the spindle, and isoform variation influences the
myosin-actin crossbridge dynamics known to be important
for the response of the muscle spindle [66, 68, 76, 77].
Thus, the predicted slow ATPase rate of MYH15 may con-
tribute in some way to the specificity of muscle spindle sig-
naling. There are further clues for this myosin’s function in
the pulmonary vascular system, as disease-associated
single-nucleotide polymorphisms (SNPs) in MYH15 correl-
ate with noncardioembolic stroke, coronary heart disease,
and chronic obstructive pulmonary disease in humans
[143–147]. In addition, a SNP in MYH15 has been linked
to bovine pulmonary hypertension, supporting a role for
MYH15 in the pulmonary system [148]. The associated dis-
eases in humans are all caused by obstructions in the vas-
cular system, which suggests that MYH15 may have a role
in clearing such blockages. Even though MYH15 shares the
heptad repeat rod motif universal to sarcomeric myosins
and is the major ventricular MyHC in chicken hearts, the
identified expression pattern in mammals suggests the po-
tential for a role outside of the sarcomere [17]. Given that
ancestral myosins were present before the evolution of a
muscle cell, it is reasonable to contemplate that the first
myosins to diverge (i.e., MYH15) could retain a contractile
or motile role outside of a muscle cell.

MYH16
Though the human MYH16 gene is a pseudogene, it has
42 predicted exons and encompasses 68 kb, spanning
three times the physical size of a typical sarcomeric my-
osin [7]. Phylogenetic analyses revealed that MYH16 pre-
dates all other vertebrate MYH isoforms and is the most
distantly related MYH gene compared to all others in
vertebrates [17, 149]. The human MYH16 sequence has
five additional introns that are only shared with the stri-
ated muscle gene of mollusks, further supporting the no-
tion that MYH16 is one of the most ancient myosins in
the animal kingdom [17]. Zhu et al. showed that MYH16
and its syntenic region are not present in the mouse
genome, indicating MYH16 was lost in mice due to a
genomic deletion [150]. In fact, the MYH16 gene has
been independently lost from several other mammalian
lineages [22, 151, 152], indicative of the susceptibility of
jaw-closing muscles to selective pressures [9]. A trend of
MYH16 loss is seen in mammals that typically favor fas-
ter contractions over forceful jaw contractions, which is
often true for smaller animals. MYH16 produces protein
in many other vertebrate species where it is expressed in
masticatory muscle. More specifically, MYH16 orthologs
have been found in the masseter and temporalis muscles

of certain primates [22, 151], carnivores [9, 22–24], mar-
supials [9], rodents [153], bats [151], crocodiles [24], and
sharks [9].
Human MYH16 became a pseudogene due to a

two-nucleotide frameshift deletion in exon 18 that re-
sults in a premature stop codon [7]. Stedman et al. pre-
dicted the MYH16 mutation occurred 2.4 million years
ago (MYA), under the assumption that the neutral muta-
tion rate remained constant since the human-chimp di-
vergence (6–7 MYA) [154]. According to this timeline,
the genetic inactivating mutation is predicted to precede
the reduction in mass of the mandible in the human an-
cestor, Homo erectus, which occurred around 2.0 MYA
[155] simultaneously with a shift toward a larger cra-
nium [156]. This led many to hypothesize that the loss
of MYH16 in early Homo resulted in small jaw muscles
and less tension applied to the cranium during develop-
ment, allowing for increased cranial capacity and
encephalization. Mechanical measurements of pure
MyHC-masticatory fibers isolated from the masseter and
temporalis muscles of dogs and cats showed that
MyHC-masticatory was the most forceful of all the my-
osin proteins [18, 157]. Contrary to the prediction of
MyHC-masticatory constituting a “superfast” myosin
[17], one study showed that MyHC-masticatory fibers
had an intermediate contraction velocity, most similar to
that of MyHC-IIa [18]. The notion that loss of MYH16
corresponded to the loss of the most forceful myosin in
the human jaw has lent itself to the hypothesis that
encephalization resulted from reduced tension in the
jaw. A more comprehensive analysis of MYH16 evolu-
tionary history later called into question the proposed
date of the MYH16 mutation, suggesting the gene may
have been inactivated 5.3 MYA, which precedes the first
appearance of Homo and the modern day cranium [158].
In 2015, the same authors revisited this question by ana-
lyzing nuclear genomic sequences of multiple hominin
lineages and concluded that the inactivating mutation
occurred before the Human-Neanderthal divergence 0.6
MYA (as they share this mutation) [159], and after the
human-chimpanzee divergence, consistent with the 2.4
MYA estimate by Stedman et al. [160].
Despite this timeline, some have argued that MYH16

inactivation would not contribute to an increased cranial
capacity, mainly because the majority of brain growth
precedes the formation of the masticatory apparatus
during fetal development [161]. Other researchers have
instead proposed that smaller jaws were the cause of the
mutation. A dietary shift to consuming softer foods
could have resulted in smaller jaw muscles, leading to a
lower dependency on the MYH16 isoform. The lack of
selective pressure could have in turn resulted in the loss
of MYH16 [9, 160]. Nevertheless, the loss of MYH16 in
humans has been proposed to be associated with a
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marked reduction in masticatory muscle mass, which
could have allowed for human encephalization [7, 162].
While loss of the MyHC-masticatory in humans might
not have directly resulted in encephalization, it is a fas-
cinating example of how genetic inactivation can lead to
the acquisition of human-specific phenotypes [163].

Conclusions
The discovery of the three ancient myosins, MYH7b,
MYH15, and MYH16, completed the inventory of the
mammalian sarcomeric myosin genes. For decades, these
myosins escaped detection due to their limited expres-
sion in the specialized tissues of mammals including the
EOMs, muscle spindles, and the masticatory muscles.
Even 17 years after their annotation in human genome,
many questions about the ancient myosins and their role
in specialized muscles remain unanswered. One such
question is whether the ancient myosins have an essen-
tial role in specialized muscles or whether they are being
eliminated through evolutionary processes in mammals.
Take, for example, one of the characterized sarcomeric
myosins, MYH13 (MyHC-extraocular), that is expressed
in two highly specialized muscles (EOM and laryngeal
muscle). Given that MyHC-extraocular has the fastest
contractile rate of the sarcomeric myosins and is
expressed exclusively in muscles that require superfast
contractions (e.g., eye movements and phonation), it ap-
pears that this myosin has evolved to fulfill unique roles
in these specialized muscles. Therefore, the argument
can be made that MYH13 expression is required for
proper muscle function in specialized muscles. Likewise,
MYH16 may too be required for the proper function of
the specialized masticatory muscles in certain species
given its exclusivity in this tissue type and its high
force-generating capability compared to the other sarco-
meric myosins. A different argument could be made for
MYH7b and MYH15 function in the EOM and muscle
spindles. These specialized muscles are known to con-
tain multiple myosin isoforms, which is hypothesized to
allow the muscle to be functionally adaptable. In con-
trast to the idea that each myosin performs a specific
task, perhaps this varied expression of myosins, includ-
ing the ancient ones, is the basis for their plasticity and
adaptability wherein there is no reliance on one isoform
for a specific function. Lastly, certain species may select-
ively express the ancient myosins due to muscle type
and demand, as is seen with the well-characterized myo-
sins. Preferential expression of these ancient myosins at
the protein level in conventional muscle of more dis-
tantly related species (e.g., snakes and birds that express
MYH7b and MYH15 protein in their cardiac and skel-
etal muscle) contrasts with that of mammals in which
these myosin motors are restricted to specialized mus-
cles. The majority of studies encompassing the ancient

myosins are done in mammals, but there may be more
to be learned from studying these isoforms in diverse
species. Doing so may help answer the question of
whether these myosins require niche roles to remain
evolutionarily relevant. Finally, a major question remains
as to whether vertebrates will continue to evolve more
functionally distinct myosins to satisfy the ever-changing
needs of the muscle and whether the functional reper-
toire of myosins will grow or if certain myosin isoforms
will become obsolete in the future.

Endnotes
1The nomenclature at the time designated this myosin

isoform as MYH14; however, current nomenclature now
refers to this myosin as MYH7b to avoid confusion with
the gene encoding nonmuscle myosin IIc.
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